

Checklist Técnico: 16 Pasos para Mejorar PDI en Tu Planta de Piensos

Introducción

Este checklist ha sido desarrollado basándose en **estándares ASAE** y experiencia de plantas comerciales. Implementar estos 16 pasos de forma sistemática permite típicamente:

- Incrementar PDI de 75-80% a 88-94% en 4-8 semanas
- Reducir polvo en 40-60%
- Incrementar output del molino en 8-15%
- Reducir costes energéticos en 2-4%

FASE 1: EVALUACIÓN PRE-GRANULACIÓN (5 PASOS)

Esta fase es **crítica**: aproximadamente 40% de la calidad final se determina aquí.

PASO 1: Auditar Tamaño de Partícula de Ingredientes

¿Qué medir?

 Distribución de tamaño de partícula (granulometría) de ingredientes clave: cereales, harinas, subproductos

Herramienta necesaria:

• Tamizador de laboratorio con malla estándar (2 mm, 1 mm, 0.5 mm mínimo)

Criterio técnico:

- Rumiantes: 80-90% debe pasar malla 3 mm (diámetro medio 2-3 mm)
- Aves: 85-95% debe pasar malla 2 mm (diámetro medio 1-2 mm)
- Acuicultura: 90-98% debe pasar malla 1 mm (diámetro medio 0.5-1 mm)

¿Por qué importa?

Partículas muy grandes (>5 mm) \rightarrow reducen área de contacto \rightarrow peor cohesión Partículas muy finas (<0.1 mm) \rightarrow crean polvo excesivo en molino \rightarrow no se aglomeran bien

Acción: Si granulometría NO cumple criterio, ajustar molienda ANTES de mezclar aditivos.

Responsable: Jefe de Molino / Técnico de Molienda

Frecuencia: Semanal (o cada nueva remesa de materia prima)

Tiempo estimado: 20 minutos

PASO 2: Revisar Composición de Formulación vs. Granulabilidad

¿Qué evaluar?

- Contenido de almidón gelatinizable (cereales)
- Contenido de proteína (plasticidad)
- Contenido de grasa (>8% dificulta aglomeración)
- Contenido de fibra (>15% PNDF dificulta aglomeración)

Escala de Granulabilidad Intrínseca

Componente	Granulabilidad	Impacto	
Maíz	Excelente	Almidón gelatinizable alto	
Cebada	Muy buena	Proteína plastificable	
Trigo	Muy buena	Almidón + gluten	
Soja (harina)	Buena	Proteína, algo pegajosa	
Girasol (harina)	Moderada	Alto contenido graso si mal procesada	
Pulpa de remolacha	Moderada	Fibra, requiere más agua	
Grasa animal	Pobre (si >5%)	Lubrica excesivamente	
Grasas vegetales	Pobre (si >5%)	Interfiere adhesión	
Harina de pescado	Moderada	Humedad, proteína, sal	

Acción recomendada:

- Si **granulabilidad global <BUENA** → Añadir subproductos moltureros (harina trigo/cebada) hasta 10-15% ANTES de añadir aglomerante
- Si contenido grasa >8% → Aumentar dosis de aglomerante +0.5-1% (típicamente: de 1% a 1.5%)
- Si fibra >15% PNDF → Aumentar tiempo acondicionamiento +10-15 segundos

Responsable: Formulador / Técnico de Nutrición

Frecuencia: Cada nueva formulación **Tiempo estimado**: 15 minutos

PASO 3: Verificar Especificación de Aglomerante

¿Qué revisar?

- ¿Tipo de aglomerante especificado? (lignosulfonato, bentonita, goma arábiga, melaza, otros)
- ¿Dosis especificada? (debe estar entre 0.5-2% para lignosulfonatos; 0.5-1.5% para bentonita)
- ¿Pureza del aglomerante? (certificado de análisis disponible)
- ¿Marca/proveedor estable? (cambios de proveedor pueden afectar)

Checklist de Especificación Correcta:

Item	Criterio	Verificar
Tipo aglomerante	Especificado en formulación escrita	□ Sí □ No
Dosis	1-1.5% para lignosulfonato; 0.5-1.5% para bentonita	□ Sí □ No
Pureza	Certificado análisis ≥95% materia seca	□ Sí □ No
Humedad aglomerante	<5% (si >5%, reduce efectividad)	□ Sí □ No
Contaminantes	Metales pesados <límites 2009<="" 767="" th="" ue=""><th>□ Sí □ No</th></límites>	□ Sí □ No
Lote trazable	Número de lote, fecha, proveedor registrados	□ Sí □ No

Acción: Si algún item es "No" → corregir especificación ANTES de producción.

Responsable: Técnico de Planta / QA Frecuencia: Antes de cada batch Tiempo estimado: 10 minutos

PASO 4: Verificar Humedad Pre-Mezcla (Crítico)

¿Qué medir?

 Humedad de la mezcla después de homogeneizar ingredientes, ANTES de acondicionador

Herramienta necesaria:

Higrómetro digital calibrado o método de estufa (105°C, 2 horas)

Criterio técnico:

Rango óptimo: 10-11.5% humedad

• Mínimo aceptable: 9.5%

• Máximo aceptable: 12%

¿Por qué importa?

Humedad <9.5% → almidón no gelatiniza adecuadamente → pellet frágil (PDI bajo)

• Humedad 10-11.5% → gelatinización óptima

Humedad >12% → exceso de agua → pellet pega en matriz → ruptura

Acción correctiva:

• Si humedad <9.5%: Añadir agua mediante pulverizador (0.5-1% típicamente)

Si humedad >12%: Dejar "reposar" en ventilación o añadir almidón seco 1-2%

Medición: Tomar muestreo en 5 puntos diferentes del tanque mezclador (arriba, centro, abajo, 2 laterales)

Responsable: Operador Molino / Técnico Control Calidad **Frecuencia**: Cada batch (antes de enviar a acondicionador)

Tiempo estimado: 15 minutos

PASO 5: Revisión de Almacenamiento de Ingredientes

¿Qué evaluar?

- ¿Ingredientes almacenados en condiciones de humedad controlada?
- ¿Presencia de caking o endurecimiento de materias primas?
- ¿Oxidación de grasas (olor rancio)?

Criterios de Almacenamiento Correcto:

Materia Prima	Humedad Óptima	Temperatura	Ubicación
Cereales	10-12%	15-20°C	Silo cerrado, ventilado
Harinas	10-12%	Ambiente	Silo/sacos protegidos humedad
Grasa animal	<2%	<20°C	Estanque cerrado
Aglomerante (polvo)	<5%	15-20°C	Envase cerrado, protegido
Subproductos	10-13%	Ambiente	Silo cerrado

Acción: Si detecta desviaciones \rightarrow revisar condiciones de almacenamiento ANTES de usar en producción.

Responsable: Jefe Almacén / Técnico Planta

Frecuencia: Semanal (inspección visual) + mensual (análisis humedad)

Tiempo estimado: 20 minutos

FASE 2: OPTIMIZACIÓN DE ACONDICIONAMIENTO (4 PASOS)

Esta es la fase que más impacta **directamente en PDI**. Típicamente genera mejoras de +10-15 puntos de PDI si estaba mal configurada.

PASO 6: Establecer Temperatura de Acondicionamiento Óptima

¿Qué medir?

- Temperatura de entrada al acondicionador
- Temperatura de salida del acondicionador (justo antes de troquel)

Herramienta necesaria:

- Termómetro infrarrojo sin contacto (rápido, preciso)
- Termómetro de termocupla si hay sensor en planta

Rangos Óptimos por Especie:

Especie	Temp. Salida Acondicionador	Justificación
Rumiantes (pellet)	80-85°C	Gelatinización almidón sin degradar vitaminas
Aves (pellet)	82-88°C	Gelatinización completa, PDI maximizado
Acuicultura (pellet)	85-90°C	Gelatinización extrema para estabilidad acuática
Porcinos (miga/crumble)	78-82°C	Balance entre PDI y palatabilidad

Protocolo de Optimización:

- 1. **Día 1**: Producir a 75°C (baja) → Medir PDI batch
- 2. **Día 2**: Producir a 80°C → Medir PDI batch
- 3. **Día 3**: Producir a 85°C → Medir PDI batch
- 4. **Día 4**: Producir a 90°C → Medir PDI batch
- 5. **Identificar**: Temperatura con máximo PDI = temperatura objetivo

¿Por qué importa?

- 75°C → Gelatinización ~40-50% → PDI típicamente 65-75%
- 80°C → Gelatinización ~65-75% → PDI típicamente 78-85%
- 85°C → Gelatinización ~80-90% → PDI típicamente 86-92%
- 90°C → Gelatinización ~90-98% → PDI típicamente 88-94% (pero riesgo degradación nutrientes)

Acción: Una vez identificada temperatura óptima → **Mantener constantemente**. Variación >±3°C reduce PDI en 2-4 puntos.

Responsable: Operador Granuladora / Técnico Control Calidad

Frecuencia: Ajuste inicial (4 días de optimización) + verificación semanal

Tiempo estimado: 45 minutos por día de optimización

PASO 7: Optimizar Tiempo de Retención en Acondicionador

¿Qué medir?

 Tiempo exacto que la harina permanece en contacto con vapor/agua en acondicionador

Herramienta necesaria:

- Cronómetro
- Cálculo: Tiempo retención = Volumen acondicionador (litros) ÷ Velocidad entrada (litros/min)

Rangos Óptimos:

Tiempo Retención	PDI Impacto	Observaciones
<15 segundos	PDI muy bajo (65-75%)	Contacto agua-almidón insuficiente
15-30 segundos	PDI moderado (78-85%)	Mínimo aceptable
30-60 segundos	PDI óptimo (88-94%)	RANGO RECOMENDADO
60-90 segundos	PDI alto pero variable (86-92%)	Riesgo sobrecalentamiento
>90 segundos	PDI variable (80-88%)	Degradación vitaminas, costo energético alto

Protocolo de Optimización:

Calcular tiempo actual:

- Acondicionador típicamente 300-500 litros
- Entrada típicamente 5-15 toneladas/hora = 83-250 kg/min = 0.09-0.27 m³/min
- Tiempo retención = Volumen acondicionador ÷ velocidad entrada

Ejemplo:

- Acondicionador 400 litros = 0.4 m³
- Entrada 10 toneladas/hora = 167 kg/min = 0.19 m³/min
- Tiempo = 0.4 ÷ 0.19 = 2.1 minutos = 126 segundos (DEMASIADO)
- Acción: Aumentar velocidad entrada o reducir volumen acondicionador

Acción: Ajustar parámetros (velocidad tornillo alimentación, nivel de llenado acondicionador) hasta lograr 30-60 segundos.

Responsable: Técnico Mantenimiento / Operador Granuladora **Frecuencia**: Medición inicial + ajuste + verificación mensual

Tiempo estimado: 20 minutos

PASO 8: Verificar Distribución Homogénea de Aglomerante PRE-Acondicionador

¿Qué evaluar?

 ¿Aglomerante está distribuido uniformemente en toda la mezcla ANTES de acondicionador?

Método de Verificación:

- 1. Muestreo visual: Tomar 10 muestras de 500g de pre-mezcla ANTES de acondicionador
- 2. **Microscopía simple**: Observar si partículas de aglomerante (típicamente oscuras/grises) están visibles dispersas uniformemente
- 3. **Método de densidad**: Si hay aglomeración excesiva, puntos de mezcla estarán más densos

Criterio Técnico:

- Aglomerante debe estar visible en TODOS los 10 puntos de muestra
- NO debe haber "bolas" o aglomeraciones locales de aglomerante

¿Por qué importa?

- Aglomerante mal distribuido → áreas con exceso (pegajosas, crean bolas) + áreas con deficiencia (frágiles)
- Resultado: pellets heterogéneos, alto polvo, baja PDI

Acción correctiva:

- Si distribución MALA: Aumentar tiempo de mezcla (típicamente +1-2 vueltas en mezclador horizontal)
- Si distribución MALA persistentemente: Revisar orden de adición (aglomerante debe añadirse en ÚLTIMA vuelta de mezcla)

Responsable: Técnico Control Calidad / Operador Mezclador **Frecuencia**: Cada batch nuevo o cada cambio de formulación

Tiempo estimado: 15 minutos

PASO 9: Monitorizar Presión en Troquel y Velocidad de Extrusión

¿Qué medir?

- Presión en matriz durante operación (manómetro en molino)
- Velocidad de extrusión (toneladas/hora actual)

Parámetros Técnicos:

Parámetro Rango Óptimo		Causa de Desviación		
Presión troquel	200-350 bar (típico)	Depende de matriz + velocidad		
Velocidad extrusión 8-15 t/h (típico pellet)		Depende de presión + diámetro troquel		
Relación compresión	40:1 a 80:1 (típica)	Medida de resistencia mecánica		

Indicadores de Problema:

Síntoma	Causa Probable	Acción
Presión excesivamente alta (>400 bar)	Matriz desgastada O humedad baja O aglomerante insuficiente	Revisar troquel + humedad + dosis aglomerante
Presión muy baja (<150 bar)	Matriz nueva sin "pulir" O humedad excesiva	Revisar matriz nueva + humedad (paso 4)
Velocidad muy baja (<6 Problemas equipamiento O matriz desgastada		Revisar fricción, temperatura, desgaste
Output variable batch a batch	Control deficiente temperatura/humedad	Implement pasos 6-7 más rigurosos

Acción: Mantener presión y velocidad **consistentes** ±5% entre batches. Variabilidad = inconsistencia PDI.

Responsable: Operador Granuladora / Técnico Mantenimiento Frecuencia: Registro en tiempo real durante producción Tiempo estimado: 5 minutos (lectura indicadores)

FASE 3: POST-GRANULACIÓN Y CONTROL DE CALIDAD (4 PASOS)

PASO 10: Medir PDI (Pellet Durability Index) - Método ASAE S269.4

¿Por qué es CRÍTICO?

PDI es la única métrica estandarizada para durabilidad. Sin ella, no puedes optimizar.

Método ASAE Estándar:

Equipamiento necesario:

- Tumbler ASAE (máquina de test de durabilidad)
- Tamizador
- Pellets de muestra representativa

Procedimiento (10 minutos):

- 1. Seleccionar 100g de pellets frescos, representativos (NO polvo previo)
- 2. Pesar exactamente: W_o = peso inicial (gramos)
- 3. Introducir en tumbler ASAE
- 4. Tumbler: Rotación 19 rpm, 10 minutos, tambor cilíndrico perforado
- 5. Tras 10 minutos: Retirar pellets, tamizar con malla 1.4 mm
- 6. Pesar pellets que quedan SIN pasar malla: W_1 = peso final (gramos)

Cálculo:

PDI (%) = $(W_1 / W_0) \times 100$

Interpretación:

PDI	Calidad	Acción
<70%	Muy pobre	PROBLEMA CRÍTICO: revisar todos pasos 1-9
70-80%	Pobre	Revisar acondicionamiento + aglomerante
80-85%	Aceptable	Mejora posible; optimizar temperatura
85-90%	Buena	Rango comercialmente aceptable
>90%	Excelente	Óptimo para crumble + aves

Frecuencia de Medición:

• **Diaria**: Durante fase de optimización (pasos 6-9)

• Cada batch: Durante transición a nuevos parámetros

• **Semanal**: Una vez proceso estabilizado

Responsable: Técnico Control Calidad (requiere capacitación oficial ASAE) **Tiempo estimado**: 20 minutos por muestra (incluyendo preparación y cálculo)

PASO 11: Cuantificar Porcentaje de Finos (Polvo) Post-Granulación

¿Qué medir?

 Porcentaje de material que pasa malla 4 mm inmediatamente después de granuladora (ANTES de enfriador)

Método Simple:

- 1. Recolectar muestra 5 kg de pellets FRESCOS post-granuladora (antes enfriador)
- 2. Pesar exactamente: M_0 = peso inicial
- 3. Tamizar con malla 4 mm
- 4. Recolectar material que PASA malla 4 mm (finos)

5. Pesar finos: M_finos

Cálculo:

% Finos = $(M_finos / M_o) \times 100$

Criterio Técnico:

% Finos	Interpretación	Acción
<5%	Excelente	Mantener parámetros actuales
5-10%	Bueno	Aceptable; monitorizar tendencia
10-15%	Moderado	Revisar aglomerante + acondicionamiento
>15%	Pobre	PROBLEMA: aumentar dosis aglomerante +0.5%

¿Por qué importa?

- Finos se pierden en transporte, almacenamiento
- Cada 1% de finos perdido = ~0.8-1.2 €/tonelada de margen perdido en plantas grandes

Acción: Correlacionar con PDI. Si PDI es 85% pero finos son 12%, significa: pellets resistentes a tumbling pero se quiebran por vibración/manipulación.

Responsable: Técnico Control Calidad / Operador Granuladora

Frecuencia: Cada batch durante optimización; luego 2-3 veces/semana

Tiempo estimado: 10 minutos

PASO 12: Controlar Humedad Final de Pellets

¿Qué medir?

Humedad del pellet DESPUÉS de enfriador/secador

Herramienta necesaria:

Higrómetro digital o estufa (105°C, 2 horas)

Criterio Técnico:

Humedad Final	Evaluación	Impacto
<9%	Muy baja	Pellets frágiles, quebradizos (PDI baja)
9-10%	Ваја	Aceptable; mejor resistencia
10-12%	ÓPTIMA	Máxima durabilidad + estabilidad almacenaje
>12%	Alta	Riesgo de caking, crecimiento hongos
>14%	Crítica	Rechazo por cliente; posible degradación

Acción Correctiva:

- Si humedad <9%: Aumentar humedad pre-mezcla (paso 4) O reducir temperatura enfriamiento
- Si humedad 10-12%: MANTENER (parámetro óptimo)
- Si humedad >12%: Aumentar tiempo en enfriador/secador OR reducir temperatura entrada enfriador

Medición: Tomar 5 puntos diferentes del transportador post-enfriador (entrada, 25%, 50%, 75%, salida).

Responsable: Técnico Control Calidad / Operador Enfriador

Frecuencia: Cada batch (esencial) Tiempo estimado: 5-15 minutos

PASO 13: Verificar Temperatura Salida Enfriador

¿Qué medir?

• Temperatura de pellets al salir del enfriador

Herramienta necesaria:

• Termómetro infrarrojo sin contacto

Criterio Técnico:

Temperatura Salida	Evaluación	Acción
Igual a ambiente ±2°C	Óptima	CORRECTO
5-10°C arriba de ambiente	Buena	Aceptable
>15°C arriba de ambiente	Problema	Aumentar tiempo enfriamiento
<temperatura ambiente<="" th=""><th>Problema</th><th>Riesgo condensación en almacenaje</th></temperatura>	Problema	Riesgo condensación en almacenaje

¿Por qué importa?

Si pellets salen calientes y se almacenan inmediatamente → condensa agua en silo → caking + crecimiento hongos

• Criterio práctico: pellets deben estar "tibios al tacto, no calientes"

Acción: Si temperatura salida es muy alta \rightarrow aumentar tiempo enfriador OR verificar caudal aire enfriador (revisar filtros).

Responsable: Operador Enfriador / Técnico Mantenimiento

Frecuencia: Cada 2-4 horas durante producción

Tiempo estimado: 2 minutos

PASO 14: Inspección Visual de Calidad de Pellets (Test Rápido)

¿Qué evaluar?

Método práctico de control visual que toma 5 minutos:

- 1. Uniformidad de tamaño: Pellets deben ser cilindros uniformes del mismo diámetro
 - ✓ Bueno: 95%+ de pellets con diámetro dentro ±0.5 mm
 - X Malo: Mezcla de tamaños muy diferentes
- 2. Integridad física: Revisar ruptura/desprendimiento
 - ✓ Bueno: <5% de pellets con grietas o fragmentos sueltos
 - X Malo: Muchos pellets con zona delaminar (pellets "abiertos")
- 3. Presencia de polvo adherido: Revisar si hay polvo suelto en superficie
 - ✓ Bueno: Pellets lisos, polvo mínimo
 - X Malo: Pellets con aspecto "polvorienta", fácil de desprender
- 4. Color y aspecto: Cambios de color pueden indicar sobrecalentamiento
 - ✓ Bueno: Color uniforme, consistente con ingredientes
 - X Malo: Manchas oscuras (sobrecalentamiento) o pálido (subdorado)
- 5. **Olor**: Sin olor a quemado o fermentado
 - ✓ Bueno: Olor neutro a ingredientes naturales
 - X Malo: Olor a quemado (temperatura excesiva)

Registro:

Crear checklist simple y firmar diariamente:

Parámetro	Criterio	√ OK	⚠ Revisar	X Problema
Uniformidad tamaño	95%+ ±0.5mm			
Integridad (grietas)	<5%			
Polvo adherido	<3%			
Color/Aspecto	Uniforme			
Olor	Normal			

Responsable: Operador Granuladora / Técnico Control Calidad

Frecuencia: Cada 2-4 horas durante producción

Tiempo estimado: 5 minutos

FASE 4: MONITOREO Y MEJORA CONTINUA (3 PASOS)

PASO 15: Registrar Datos en Sistema de Trazabilidad

¿Qué registrar?

Crear tabla de seguimiento (Excel o ERP) con estos datos por CADA BATCH producido:

Campo	Ejemplo	Importancia	
Fecha/Hora	04/11/2025 - 14:30	Trazabilidad temporal	
Número batch	BATCH-2025-1104-001	Identificación única	
Formulación	Aves semana 1-3	Identificar fórmula	
Humedad pre-mezcla	10.5%	Identificar desviaciones	
Temperatura acondicionador	86°C	Correlación con PDI	
Tiempo retención	45 seg	Correlación con PDI	
Presión troquel	280 bar	Indicador de problemas	
Humedad final	11.2%	Control calidad post- proceso	
Temperatura salida enfriador	24°C (amb 20°C)	Control condensación	
% Finos	8.5%	Indicador durabilidad	
PDI (%)	88.3%	MÉTRICA PRINCIPAL	
Observaciones	Nuevo lote aglomerante; PDI +2% vs lote anterior	Notas relevantes	
Operador	Juan García	Responsable	

Beneficios de Registro:

• Identificar patrones: ¿Qué parámetro correlaciona más con PDI alto/bajo?

• Trazabilidad: Si cliente reclama, saber exactamente qué batch fue

• **Mejora continua**: Ver tendencia mes a mes

Herramienta sugerida:

Excel con gráfico XY: Temperatura acondicionador (X) vs PDI (Y)

Identificarán claramente la temperatura óptima

Responsable: Técnico Control Calidad / Responsable Turno

Frecuencia: Cada batch (OBLIGATORIO)
Tiempo estimado: 5 minutos por batch

PASO 16: Análisis Mensual de Tendencias + Ajustes de Optimización

¿Qué hacer?

Reunión mensual (1 hora) con:

- Operador Granuladora
- Técnico Control Calidad
- Jefe Producción
- Técnico Nutrición (si es posible)

Agenda de Reunión:

- 1. Análisis de datos (20 minutos)
 - Gráfico PDI promedio vs. mes anterior
 - Gráfico correlación Temperatura → PDI
 - Gráfico correlación Humedad pre-mezcla → PDI
 - Gráfico % Finos promedio
 - Gráfico Humedad final promedio
- 2. **Identificar desviaciones** (15 minutos)
 - ¿PDI bajó? → Revisar cambios en formulación O ingredientes
 - ¿% Finos subió? → Revisar dosis aglomerante
 - ¿Variabilidad PDI alta? → Revisar consistencia temperatura/humedad
- 3. Definir acciones correctivas (15 minutos)
 - ¿Ajustar temperatura +/- 2°C?
 - ¿Cambiar dosis aglomerante?
 - ¿Revisar calidad ingredientes con proveedor?
 - ¿Mantenimiento preventivo de matriz/rodillos?
- 4. Establecer objetivos (10 minutos)
 - PDI objetivo mes siguiente
 - Métricas de éxito

Indicadores de Éxito:

Métrica	Mes 1	Mes 2	Mes 3	Objetivo
PDI promedio	78%	84%	90%	>88%
% Finos promedio	14%	11%	7%	<8%
Desv. Est. PDI	±8%	±4%	±2%	<±3%
Variabilidad temp.	±4°C	±2°C	±1°C	<±2°C

Responsable: Jefe Producción / Técnico Control Calidad (facilitar reunión)

Frecuencia: Mensual (primer lunes/martes del mes)

Tiempo estimado: 60 minutos

RESUMEN RÁPIDO: CHECKLIST DE 16 PASOS

Fase 1: Pre-Granulación (5 pasos) - Responsable: Formulador + Técnico Planta

- Paso 1: Auditar tamaño partícula ingredientes
- Paso 2: Revisar composición vs. granulabilidad
- Paso 3: Verificar especificación aglomerante
- Paso 4: Medir humedad pre-mezcla (10-11.5%)
- Paso 5: Revisar almacenamiento ingredientes

Fase 2: Acondicionamiento (4 pasos) - Responsable: Operador Granuladora

- Paso 6: Establecer temperatura acondicionador (80-88°C típico)
- Paso 7: Optimizar tiempo retención (30-60 segundos)
- Paso 8: Verificar distribución homogénea aglomerante
- Paso 9: Monitorizar presión troquel + velocidad extrusión

Fase 3: Post-Granulación (4 pasos) - Responsable: Técnico QA

- Paso 10: Medir PDI (ASAE S269.4) métrica crítica
- Paso 11: Cuantificar % finos post-granulación
- Paso 12: Controlar humedad final (10-12%)
- Paso 13: Verificar temperatura salida enfriador
- Paso 14: Inspección visual de calidad (5 min cada 4h)

Fase 4: Mejora Continua (3 pasos) - Responsable: Jefe Producción

- Paso 15: Registrar datos en sistema trazabilidad (cada batch)
- Paso 16: Análisis mensual de tendencias + ajustes

METODOLOGÍA RECOMENDADA DE IMPLEMENTACIÓN

Semana 1: Evaluación Inicial

- Implementar pasos 1-5 + paso 14 (control visual)
- Registrar baseline actual de PDI (paso 10)

Semanas 2-4: Optimización Acondicionamiento

- Ejecutar protocolos pasos 6-7 (temperatura + retención)
- Medir PDI diario (paso 10)
- Identificar parámetros óptimos

Semanas 5-8: Validación y Estabilización

- Implementar pasos 8-9 (distribución + presión)
- Medir PDI cada batch
- Refinar humedad (paso 4) y temperatura final (paso 13)

Mes 2+: Operación Normal + Mejora Continua

- Todos pasos operacionales rutinarios
- Realizar paso 15 (registro datos)
- Reunión mensual (paso 16) para análisis tendencias

Página 25 de 26

INVERSIÓN REQUERIDA vs. RETORNO

Inversión (Una sola vez)

Tumbler ASAE: 3.000-5.000 €

• Higrómetros digitales: 200-400 € (2-3 unidades)

Termómetros IR: 100-200 € (2 unidades)

• Capacitación técnico: 500-1,000 €

• **Total**: 4.000-7.000 €

ROI Estimado (Plantas >30.000 T/año)

Reducción polvo: 40-60% × 0,8-1,2 €/T = 10.000-25.000 €/año

• Mejora PDI → crumble premium: +5-8% margen = 15.000-50.000 €/año

• Eficiencia energética: -3% × 0,15 €/T = 1.500-4.500 €/año

• ROI anual: 26.500-79.500 €/año

Tiempo recuperación inversión: 1-3 meses (plantas medianas/grandes)

INFORMACIÓN PARA IMPLEMENTACIÓN

Para dudas técnicas específicas durante implementación de este checklist:

- ¿Cómo configurar el tumbler ASAE? → Manual ASAE S269.4 o vídeo YouTube "ASAE PDI testing"
- ¿Temperatura óptima para mi formulación específica?

 Contactar asesor técnico
- ¿Mi % finos de 12% es aceptable? → Depende especie; realizar evaluación
- ¿Qué tipo de aglomerante para mi situación? → Análisis personalizado

Última revisión: 04 de noviembre de 2025

Válido para: Plantas granulación piensos todas especies (rumiantes, aves, porcinos, acuicultura)